

European Research Council

Established by the European Commission

Kohn–Sham Inversion with Mathematical Guarantees

Michael F. Herbst,^{1,2} Vebjørn H. Bakkestuen,^{3,*} and Andre Laestadius^{3,4,*}

 $ho_{
m gs}$

¹Mathematics for Materials Modelling, Institute of Mathematics & Institute of Materials, École Polytechnique Fédérale de Lausanne ²National Centre for Computational Design and Discovery of Novel Materials (MARVEL),

École Polytechnique Fédérale de Lausanne

³Department of Computer Science, Oslo Metropolitan University ⁴Hylleraas Centre for Quantum Molecular Sciences, University of Oslo *Supported under ERC Starting Grant No. 101041487 REGAL

Motivation

Density-functional theory (DFT) Indispensable tool in chemistry, materials science, and solid-state physics [1]. Key ingredients: density ρ & universal density functional $\mathcal{F}(\rho)$. In practice \mathcal{F} is approximated. Significant efforts devoted to new approx. $\rho_{\rm gs} = \text{ground-state density}$

Kohn–Sham (KS) approach Interacting electrons $-\frac{1}{2}\sum_{j}\nabla_{j}^{2} + \sum_{k < j} |\mathbf{r}_{j} - \mathbf{r}_{k}|^{-1} + \sum_{j} v_{\text{ext}}(\mathbf{r}_{j})$ Non-interacting electrons (KS system) $-\frac{1}{2}\sum_{j}\nabla_{j}^{2} + \sum_{j}\left[v_{\text{ext}}(\mathbf{r}_{j}) + v_{\text{H}}(\mathbf{r}_{j}) + v_{\text{xc}}(\mathbf{r}_{j})\right]$

The Inversion Scheme

Initiating forward scheme: ard Find a reference $\rho_{\rm gs}$. $v_{\rm xc}$ $ho_{
m gs}$ Origin e.g., experimental data, J FCI, coupled-cluster, and $\tilde{\rho}_{\rm gs} = \rho_{\rm gs} +$ quantum MC calculations. *Errors:* $\Delta \rho$ introduced compare \mathbf{C} \Rightarrow inexact reference $\tilde{\rho}_{\rm gs}$. mpai $\tilde{\rho}_{\mathrm{gs}}^{\varepsilon} = \operatorname{argmin}_{\rho} \mathcal{E}(\rho; \tilde{\rho}_{\mathrm{gs}})$ Origins e.g., experimental errors, basis truncations, and erse numerical inaccuracies. $\tilde{v}_{\rm xc}^{\varepsilon} = \frac{1}{\varepsilon} J (\tilde{\rho}_{\rm gs}^{\varepsilon} - \tilde{\rho}_{\rm gs})$ Inversion scheme given $\tilde{\rho}_{gs}$: (1) obtain the proximal density $\tilde{\rho}_{\rm gs}^{\varepsilon}$ by minimising eq. (3). $\lim_{\varepsilon \to 0^+} \tilde{v}_{\rm xc}^{\varepsilon}$ $\lim_{\varepsilon \to 0^+} \tilde{\rho}_{\rm gs}^{\varepsilon}$ (2) obtain $\tilde{v}_{\rm xc}^{\varepsilon}$ by application of the duality mapping, eq. (4). extrapolate numerically (3) repeat (1) & (2) for a decreasing sequence in ε . (4) $\tilde{v}_{\rm xc}$ and corresponding $\tilde{\rho}_{\rm gs}$ are obtained by extrapolating $\varepsilon \to 0^+$. The extrapolated $\tilde{\rho}_{gs}^{\varepsilon}$ (and $\tilde{v}_{xc}^{\varepsilon}$) is compared to the reference ρ_{gs} (and v_{xc} , if known).

Inverse KS

Given $\rho_{\rm gs}$, what is the corresponding $v_{\rm xc}$? Significantly less studied than KS. Rigorous approach to understanding \mathcal{F} and obtaining approximations [2].

Critical unknown: $v_{\rm xc}$ Typically from choice of an approximate \mathcal{F}

Differentiability of \mathcal{F} Standard formulation, the exact \mathcal{F} is non-differentiable with respect to ρ [3]. Practical implementations often assume differentiability, e.g., $v_{\rm xc} = \delta E_{\rm xc} / \delta \rho$. Regularising $\mathcal{F} \Rightarrow$ differentiable \mathcal{F} .

"Lossless" Moreau–Yosida Regularisation of DFT

Densities $\rho \in \mathcal{D}$ and potentials $v \in \mathcal{V}$. \mathcal{D} uniformly convex and $\mathcal{F}: \mathcal{D} \to \mathbb{R}$ convex & l.s.c.

The Moreau–Yosida (MY) regularisation of \mathcal{F} at $\varepsilon > 0$: the infimal convolution

$$\mathcal{F}^{\varepsilon}(\rho) = \inf_{\sigma \in \mathcal{D}} \left\{ \mathcal{F}(\sigma) + \frac{1}{2\varepsilon} \|\sigma - \rho\|_{\mathcal{D}}^{2} \right\}.$$
 (1)

 \mathcal{F} relates to the regularised and exact ground-state energy as

$$E^{\varepsilon}(v) = \inf_{\rho \in \mathcal{D}} \left\{ \mathcal{F}^{\varepsilon}(\rho) + \langle v, \rho \rangle \right\} \quad \text{and} \quad E(v) = E^{\varepsilon}(v) + \frac{\varepsilon}{2} \|v\|_{\mathcal{V}}^{2}, \tag{2}$$

i.e., MY regularisation is *lossless*. Consequence of inf-conv. and $E(\text{concave}) \leftrightarrow \mathcal{F}(\text{convex})$.

Obtaining the Exchange-Correlation Potential

Numerical Example: Bulk Silicone

Forward:

From a $v_{\rm xc}$, $\rho_{\rm gs}$ found by solving forward KS SCF problem with PBE xc functional.

Errors: $\Delta \rho$ from interpolation of $\rho_{\rm gs}$ on smaller basis $\rightarrow \tilde{\rho}_{\rm gs}$.

Fix $\rho_{\rm gs}$ and guiding functional $\mathcal{F}(\rho) = T(\rho) + E_{\rm H}(\rho) + \int_{\Omega} v_{\rm ext} \rho$. $T(\rho)$: kinetic contribution, $E_{\rm H}$: Hartree term, $v_{\rm ext}$: external potential. $\mathcal{D} = H_{\text{per}}^{-1}$ and $\mathcal{V} = H_{\text{per}}^{1}$: periodic Sobolev spaces [4]. **Crucial step:** minimisation over $\rho \in \mathcal{D}$ of

$$\mathcal{E}(\rho;\rho_{\rm gs}) = \mathcal{F}(\rho) + \frac{1}{2\varepsilon} \|\rho - \rho_{\rm gs}\|_{\mathcal{D}}^2.$$
(3)

Minimum of \mathcal{E} , the proximal density $\rho_{gs}^{\varepsilon} = \operatorname{argmin}_{\rho} \mathcal{E}(\rho, \rho_{gs})$ attained uniquely [5]. Duality mapping $J: \mathcal{D} \to \mathcal{V}$

$$J[\rho](\mathbf{r}) = (\Phi * \rho)(\mathbf{r}) = \int_{\mathbb{R}^3} \frac{\rho(\mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|} e^{-|\mathbf{r} - \mathbf{r}'|} \,\mathrm{d}^3 r' \,. \tag{4}$$

The xc potential is [6, 7]

$$v_{\rm xc}(\mathbf{r}) = \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \int_{\mathbb{R}^3} \frac{\rho_{\rm gs}^{\varepsilon}(\mathbf{r}') - \rho_{\rm gs}(\mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|} e^{-|\mathbf{r} - \mathbf{r}'|} \,\mathrm{d}^3 r' \,.$$

Inverse: *Inverse:* For exponentially decreasing sequence in ε , expect: $v_{\rm xc}^{\varepsilon} \rightarrow v_{\rm xc}$ and $\tilde{\rho}_{\rm gs}^{\varepsilon} \rightarrow \tilde{\rho}_{\rm gs}$. $\tilde{\rho}_{\rm gs}^{10^{-3}}$ To match the forward KS, $\stackrel{\scriptstyle{\leftarrow}}{\simeq}$ 10⁻ use a parametrisation of $\tilde{
ho}_{\mathrm{gs}}^{\varepsilon}$ in terms of orthonor-

mal orbitals and minimise \mathcal{E} using a BFGS-based quasi-Newton scheme. Details, code, and data on GitHub [8].

Inverse crime [2]:

Same quantum-chemical model and discretisation basis for both forward and inverse. To highlight the strict mathematical results: (1) Knowledge of ref. $v_{\rm xc}$ necessary. (2) Direct comparison of ref. $\tilde{\rho}_{gs}$ and $\tilde{\rho}_{gs}^{\varepsilon}$ beneficial. (3) Adding controlled perturbations $\Delta \rho$.

Error Bounds: Analytical & Numerical

(5)

[8] github.com/mfherbst/supporting-my-inversion.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Currently available on arXiv:2409.04372

⊠ : vebjorn.bakkestuen@oslomet.no