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1. INTRODUCTION
A. Prelude and Overview

The study of light-matter interactions forms the basis for
understanding a wide range of phenomena and those effects
are instrumental for measuring and manipulating matter in ex-
periments. At the fundamental level, charged particles inter-
act among each other through their coupling 1o the photon
field, a process that is described by quantum electrodynamics
(QED) [1-6]. While the quantization of the electromagnetic
field is often considered to only be relevant for high-enerzy
physics, QED effects, such as spontancous emission or the
Purcell effect, also occur in the low-energy (non-relativistic)
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State Space & Lifted Pauli Matrices

N two-level systems and M QHOs:

Y e L2RM, C) o2 ~ L2RM, )

0l=1®---91® 0, 1®---®1, ac{z,vy,z}
-

jth
(01 (0 =i 1 0
92=\1 0) %=\ o) 727 \o -1
o,
o, = . G(CQ ><2>
ol

o
W
&%

Vebjorn H. Bakkestuen Quantum-Electrodynamical Density-Functional Theory 2nd December 2024 4/17



Example: N =2

1 1 T
B 1 -1
A ~1 ’ 1
-1 -1
0010 01 0 0\\
o _lfooo01 1000
=111 000|000 1
0100 0010

(W, 019) = 1041 T2ory + (Y- [172@ary = 19—+ T2 @ary = 19— II72ary
&
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The Multimode Dicke Hamiltonian

I NB! Math units, e.g., £ = 1
Internal Hamiltonian ath units, e.g., 5

Hy = (7A+ ’X|2)]1(C2N +x-Ao, -t o,

AeRM*N  t e RN (t#0)

“Potentials”:
veRY  jeRM

Full Hamiltonian
Hv,j)=Hyo+v-0,+j-x

“Densities”:
o=, o) e[-1, 11N &= (¢, x¢) eRY
%,

Vebjorn H. Bakkestuen Quantum-Electrodynamical Density-Functional Theory 2nd December 2024 6/17



A Density-Functional Theory

2 A Density-Functional Theory
The Ground-State Problem
A Hohenberg—Kohn Theorem
The Levy—Lieb Functional
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The Ground-State Problem

Qo = Q(Hp) <+— form domain of QHO

E(v,j) = Jgéo (¢, H(v,j)v)
[[e]*=1

Theorem (/N-representability)

For every (o,€) € [-1,1]Y x RM there exists a € Qo such that

[l =1, (¥, 0.4) =0, and (b, xyp) =&

o
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Regular Density

Definition (Regular Polarisation [1])

o € [-1,1]"V is called regular if for every x € RiN such that
Ix[[=1 and (x,o.x) =0

one has {x,olx,...,0¥x} as a set of linear independent vectors.
The set of all regular o is denoted R .

Any o € [-1,1]N \ Ry is not regular.
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Example: Regular Density

If N =1,

R

Vebjorn H. Bakkestuen

(_17 1)

Quantum-Electrodynamical Density-Functional Theory

If N =2,

Ry C (—1,1)
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Example: Regular Density N = 3

Ry C (—1,1)3

R union of disjoint open convex
polytopes

[—1, 1]V \ R union of finite number of
hyperplanes intersected with [—1, 1]V
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A Hohenberg—Kohn Theorem

Theorem

Any density pair (a,€) € Ry x RM of a ground state uniquely determines an
external pair (v,j) € RN x RM, That is, the mapping

RY x RM 35 (v,j) — (0,€) € Ry x RM

is an injection.
Internal variables
(Uas) S [_17 1]N x RM
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The Levy-Lieb Functional

Constraint manifold

Moge={¥ € Qo: ¥l =1, (¥, 0:9) = 7, (¢, x¢) = £}

Fp:[-1L,1V xRM 5 R,

FLL(o-a 5) = inf <¢7 H0¢>

wGMa,s

Ewj) = i el
(V .]) (Uyg)e[jlil:l]NXRAf{ LL(O' £)+V o+j E}
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Properties of Fi
For every (o,€) € [-1,1]V x RM
Symmetric
Fu(o,§) = Fuu(—o,—§)

Displacement rule
FLL(O',f) = FLL(O',O) + £ Ao+ |£|2

There exists a real-valued optimiser of Fy (o, &)
Virial relation: for any optimiser 1 of Fy (o, 0),

1
IVa|* = Ixep]|* = 5%, x- Aoy
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Optimiser of Fi

Theorem (Optimisers are low-lying eigenstates)

Let (0,¢) € Ry x RM. Suppose that v € M, ¢ is an optimiser of Fy (o, &) with
Lagrange multipliers E € R, v € RN, and j € RM such that « satisfies

H(v,j) = Ev,
and for all x in the tangent space of My ¢ at 1,
(x, H(v,i)x) > E|lx|*.
Then 1 is at most the (N + M)th excited eigenstate of H(v, j), and
Fip(o,8) = (¥, H(v,j)y) =E—-v-0—j-&
&%,
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Conclusions

Very explicit form of DFT
Regular densities
Characterisation of optimisers

Open questions (N > 2):
v-representability
Differentiability of Fyr,
Does Iy, = F,?
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Motivation

Light-matter interactions

Ground-state effects of photon-electron coupling
Explicit from (almost) of a DFT functional
Simple model
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The Quantum Rabi Model

fo=l@+ Y@ .+ g
L = i b e C?® [A(R,C) ~ LA(R,C?)
TLS kin.  TLS-QHO coupling
QHO ~
~ ~ [—1,1] 5 0 := (¢, 7,7)
H(v,j) = Ho+vo, + jz RS ¢ = (¥, T9)
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Coupling Strength Functional

Coupling strength parameter: s € R
HA = (—A+ X)L v +8X- Ao, —t- 0y

Fip(o,8) = inf (4, H'y)

Qo unchanged
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A Trial State

Lemma

Let (0,¢) € [-1,1]Y x RM and A = 0, then the state

1 N 1+on
—Llix_¢g2 V2

= et o=®)
P(x) oMya© ¢ ¢ 1—on
n=1 NG)

is an optimiser of FY; (o,€), and

N
Fi(0,8) = M+ &> =) tny/1— a2
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The Superdifferential of Fi ;.

RM*N 5 A F\(0,6) and R > s+ Fi}(o,€) convex

Lemma
For every (fixed) (o,€) € [-1,1]Y x RM and s € R, then

95 [Fit(0,8)] (s) D {(#s, x- Aap,) : Y5 € Qo With Fif = (1, HY ) }
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The Adiabatic Connection

Theorem

The functional F\ : [-1,1]Y x RM — R satisfies

N
Fy(0,8) =M+ ¢ = tay/1— 02 +£- Ao + G o).
Here
A P g 2
G o) := §|A0'| — §\|A0Z¢s|| +(t- 0,95, V- Alo, —0)ps) | ds,
0
and s € M is a real-valued optimiser of Ff2 (o, 0).
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