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The key features of density-functional theory (DFT) within a minimal implementation of quantum electrodynamics
are demonstrated, thus allowing to study elementary properties of quantum-electrodynamical density-functional theory
(QEDFT). We primarily employ the quantum Rabi model, that describes a two-level system coupled to a single photon
mode, and also discuss the Dicke model, where multiple two-level systems couple to the same photon mode. In these
settings, the density variables of the system are the polarization and the displacement of the photon field. We give analyt-
ical expressions for the constrained-search functional and the exchange-correlation potential and compare to established
results from QEDFT. We further derive a form for the adiabatic connection that is almost explicit in the density variables,
up to only a non-explicit correlation term that gets bounded both analytically and numerically. This allows several key
features of DFT to be studied without approximations.
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I. INTRODUCTION

A. Prelude and Overview

The study of light-matter interactions forms the basis for
understanding a wide range of phenomena and those e!ects
are instrumental for measuring and manipulating matter in ex-
periments. At the fundamental level, charged particles inter-
act among each other through their coupling to the photon
field, a process that is described by quantum electrodynamics
(QED) [1–6]. While the quantization of the electromagnetic
field is often considered to only be relevant for high-energy
physics, QED e!ects, such as spontaneous emission or the
Purcell e!ect, also occur in the low-energy (non-relativistic)
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Abstract. A detailed analysis of density-functional theory for quantum-elec-
trodynamical model systems is provided. In particular, the quantum Rabi
model, the Dicke model, and a generalization of the latter to multiple modes
are considered. We prove a Hohenberg–Kohn theorem that manifests the mag-
netization and displacement as internal variables, along with several repre-
sentability results. The constrained-search functionals for pure states and en-
sembles are introduced and analyzed. We find the optimizers for the pure-state
constrained-search functional to be low-lying eigenstates of the Hamiltonian
and, based on the properties of the optimizers, we formulate an adiabatic-
connection formula. In the reduced case of the Rabi model we can even show
di!erentiability of the universal density functional, which amounts to unique
pure-state v-representability.

1. Introduction

Quantum electrodynamics (QED) is the fully quantized theory of matter and
light [Ryd96; GR13]. It describes the interaction between charged particles through
their coupling to the electromagnetic field. Apart from high-energy physics, partic-
ularly in the domain of equilibrium condensed-matter physics, non-relativistic QED

Corresponding author: andre.laestadius@oslomet.no.
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State Space & Lifted Pauli Matrices
N two-level systems and M QHOs:

ψ ∈ L2(RM ,C)⊗ C2N ≃ L2(RM ,C2N )

σja = 1⊗ · · · ⊗ 1⊗ σa︸︷︷︸
jth

⊗1⊗ · · · ⊗ 1, a ∈ {x, y, z}

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

σa =


σ1
a

σ2
a
...
σNa

 ∈ (
C2N×2N

)N
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Example: N = 2

σz =




1
1
−1

−1

 ,


1
−1

1
−1




⊤

σx =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




⊤

⟨ψ, σ1
zψ⟩ = ∥ψ++∥2L2(RM ) + ∥ψ+−∥2L2(RM ) − ∥ψ−+∥2L2(RM ) − ∥ψ−−∥2L2(RM )
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The Multimode Dicke Hamiltonian
Internal Hamiltonian

H0 =
(
−∆ + |x|2

)
1C2N + x · Λσz − t · σx

Λ ∈ RM×N t ∈ RN (t ̸= 0)

“Potentials”:
v ∈ RN j ∈ RM

Full Hamiltonian
H(v, j) = H0 + v · σz + j · x

“Densities”:

σ = ⟨ψ, σzψ⟩ ∈ [−1, 1]N ξ = ⟨ψ, xψ⟩ ∈ RM
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NB! Math units, e.g., ω
2 = 1



A Density-Functional Theory

1 The Dicke Model

2 A Density-Functional Theory
The Ground-State Problem
A Hohenberg–Kohn Theorem
The Levy–Lieb Functional

3 Conclusions

4 References

Vebjørn H. Bakkestuen Quantum-Electrodynamical Density-Functional Theory 2nd December 2024



The Ground-State Problem

Q0 := Q(H0) ←− form domain of QHO

E(v, j) = inf
ψ∈Q0
∥ψ∥2=1

⟨ψ, H(v, j)ψ⟩

Theorem (N -representability)

For every (σ, ξ) ∈ [−1, 1]N × RM there exists a ψ ∈ Q0 such that

∥ψ∥ = 1, ⟨ψ, σzψ⟩ = σ, and ⟨ψ, xψ⟩ = ξ.
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Regular Density
Definition (Regular Polarisation [1])

σ ∈ [−1, 1]N is called regular if for every χ ∈ R2N
+ such that

∥χ∥ = 1 and ⟨χ, σzχ⟩ = σ

one has {χ, σ1
zχ, . . . , σ

N
z χ} as a set of linear independent vectors.

The set of all regular σ is denoted RN .

Any σ ∈ [−1, 1]N \ RN is not regular.
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Example: Regular Density

If N = 1,
R1 = (−1, 1)

If N = 2,

R2 ⊂ (−1, 1)2
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Example: Regular Density N = 3

R3 ⊂ (−1, 1)3

RN : union of disjoint open convex
polytopes

[−1, 1]N \ RN : union of finite number of
hyperplanes intersected with [−1, 1]N
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A Hohenberg–Kohn Theorem
Theorem

Any density pair (σ, ξ) ∈ RN × RM of a ground state uniquely determines an
external pair (v, j) ∈ RN × RM . That is, the mapping

RN × RM ∋ (v, j) 7−→ (σ, ξ) ∈ RN × RM

is an injection.

Internal variables
(σ, ξ) ∈ [−1, 1]N × RM
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The Levy–Lieb Functional
Constraint manifold

Mσ,ξ = {ψ ∈ Q0 : ∥ψ∥ = 1, ⟨ψ, σzψ⟩ = σ, ⟨ψ, xψ⟩ = ξ}

FLL : [−1, 1]N × RM → R,

FLL(σ, ξ) := inf
ψ∈Mσ,ξ

⟨ψ, H0ψ⟩

E(v, j) = inf
(σ,ξ)∈[−1,1]N×RM

{FLL(σ, ξ) + v · σ + j · ξ}
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Properties of FLL
For every (σ, ξ) ∈ [−1, 1]N × RM

Symmetric
FLL(σ, ξ) = FLL(−σ,−ξ)

Displacement rule

FLL(σ, ξ) = FLL(σ, 0) + ξ · Λσ + |ξ|2

There exists a real-valued optimiser of FLL(σ, ξ)
Virial relation: for any optimiser ψ of FLL(σ, 0),

∥∇ψ∥2 − ∥xψ∥2 = 1
2⟨ψ, x · Λσzψ⟩
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Optimiser of FLL

Theorem (Optimisers are low-lying eigenstates)

Let (σ, ξ) ∈ RN × RM . Suppose that ψ ∈Mσ,ξ is an optimiser of FLL(σ, ξ) with
Lagrange multipliers E ∈ R, v ∈ RN , and j ∈ RM such that ψ satisfies

H(v, j)ψ = Eψ,

and for all χ in the tangent space ofMσ,ξ at ψ,

⟨χ, H(v, j)χ⟩ ≥ E∥χ∥2.

Then ψ is at most the (N +M)th excited eigenstate of H(v, j), and

FLL(σ, ξ) = ⟨ψ, H(v, j)ψ⟩ = E − v · σ − j · ξ.
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Conclusions

Very explicit form of DFT
Regular densities
Characterisation of optimisers

Open questions (N ≥ 2):
v-representability
Differentiability of FLL

Does FLL = FL?
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Motivation

Light-matter interactions
Ground-state effects of photon-electron coupling
Explicit from (almost) of a DFT functional
Simple model
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The Quantum Rabi Model
Ĥ0 = 1

2 p̂
2 + ω2

2 x̂2︸ ︷︷ ︸
QHO

−tσ̂x︸ ︷︷ ︸
TLS kin.

+ gσ̂zx̂︸ ︷︷ ︸
TLS-QHO coupling

Ĥ(v, j) = Ĥ0 + vσ̂z + jx̂

ψ ∈ C2 ⊗ L2(R,C) ≃ L2(R,C2)

[−1, 1] ∋ σ := ⟨ψ, σ̂zψ⟩
R ∋ ξ := ⟨ψ, x̂ψ⟩

|↓⟩

|↑⟩
ω

j v
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Coupling Strength Functional
Coupling strength parameter: s ∈ R

HsΛ
0 = (−∆ + |x|)1

C2N + sx · Λσz − t · σx

F sΛ
LL(σ, ξ) = inf

ψ∈Mσ

⟨ψ, HsΛ
0 ψ⟩

Q0 unchanged
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A Trial State
Lemma

Let (σ, ξ) ∈ [−1, 1]N × RM and Λ = 0, then the state

ψ(x) = 1
πM/4 e

− 1
2 |x−ξ|

2
c, c =

N⊗
n=1

√
1+σn√

2√
1−σn√

2


is an optimiser of F 0

LL(σ, ξ), and

F 0
LL(σ, ξ) = M + |ξ|2 −

N∑
n

tn
√

1− σ2
n.
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The Superdifferential of FLL

RM×N ∋ Λ 7−→ FΛ
LL(σ, ξ) and R ∋ s 7−→ F sΛ

LL(σ, ξ) convex

Lemma

For every (fixed) (σ, ξ) ∈ [−1, 1]N × RM and s ∈ R, then

∂s
[
F sΛ

LL(σ, ξ)
]

(s) ⊃
{
⟨ψs, x · Λσψs⟩ : ψs ∈ Q0 with F sΛ

LL = ⟨ψs, HsΛ
0 ψs⟩

}
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The Adiabatic Connection
Theorem

The functional FΛ
LL : [−1, 1]N × RM → R satisfies

FΛ
LL(σ, ξ) = M + |ξ|2 −

N∑
n

tn
√

1− σ2
n + ξ · Λσ +GΛ(σ).

Here

GΛ(σ) := 1
2 |Λσ|

2 −
∫ 1

0

(
1
2∥Λσzψs∥2 + ⟨t · σxψs,∇ · Λ(σz − σ)ψs⟩

)
ds ,

and ψs ∈Mσ,0 is a real-valued optimiser of F sΛ
LL(σ, 0).
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