

Quantum-Electrodynamical Density-Functional Theory Exemplified by the Multimode Dicke Model

Vebjørn H. Bakkestuen

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Acknowledgements

With A. Csirik, 1,2 M. Penz, 1,3 V. Falmår, 1 M. Lotfigolian, 1 A. Davidov, 1 M. Ruggenthaler, 3 and A. Laestadius. 1,2

- 1 Department of Computer Science, Oslo Metropolitan University
- 2 Hylleraas Centre for Quantum Molecular Sciences, University of Oslo
- 3 Max Planck Institute for the Structure and Dynamics of Matter

Funded under ERC StG No. 101041487 REGAL

European Research Council

Established by the European Commission

Quantum-Electrodynamical Density-Functional Theory

Quantum-Electrodynamical Density-Functional Theory Exemplified by the Quantum Rahi Model

Vebiørn H. Bakkestuen.¹ Vegard Falmår.¹ Marvam Lotfigolian.¹ Markus Penz.^{1,2} Michael Ruggenthaler.^{2,3} and Andra I apetadius1.4

Department of Computer Science, Oslo Metropolitan University, Oslo, Norway,

²⁾Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Hamburg,

3) The Hamburg Center for Ultrafast Imaging, Hamburg, Germany

4) Hillemas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norward

The key features of density-functional theory (DET) within a minimal implementation of quantum electrodynamics are demonstrated thus allowing to study elementary properties of quantum-electrodynamical density-functional theory (OFDET). We primarily employ the quantum Rahi model, that describes a two-level system counled to a single photon mode, and also discuss the Dicke model, where multiple two-level systems couple to the same photon mode. In these settings, the density variables of the system are the polarization and the displacement of the photon field. We give analytical expressions for the constrained-search functional and the exchange-correlation potential and compare to established results from OEDET. We further derive a form for the adiabatic connection that is almost explicit in the density variables up to only a non-explicit correlation term that sets bounded both analytically and numerically. This allows several key features of DET to be studied without approximations.

Proofs of Theorem IV.2.(5-6):

field, a process that is described by quantum electrodynamics (QED) [1-6]. While the quantization of the electromagnetic field is often considered to only be relevant for high-energy physics. OED effects, such as spontaneous emission or the

Purcell effect, also occur in the low-energy (non-relativistic)

CONTENTS

			Relations for the Kinetic Hopping	13
	I. Introduction	1	C. Optimizers are Ground States and	
	A. Prelude and Overview	1	v-Representability	14
١.	B. Quantum-Electrodynamical Density-Functional		D. The Levy–Lieb Functional at Zero Coupling	15
	Theory	2		
	C. Models in QED	2	v. The Adiabatic Connection	10
	D. Elements from Standard Density-Functional		A. Integral Representation of the Universal	
	Theory	3	Functional	16
			B. Correlation Contributions	18
	II. The Quantum Rabi Model	5	C. Bounds on Correlation	19
	A. Model Definition	5	D. Approximate Correlation	20
	B. Spaces and Domains	5	M. Distant from Assessment and	
	C. Properties of the Ground State	6	vi. Photon-free Approximation	- 21
	D. Results from the Hypervirial Theorem	7	A. Effective Potential	21
	E. The Dicke Model*	8	B. Photon-free Hamiltonian	22
			VII. Conclusions	23
	III. Hohenberg–Kohn Theorems	9	TH. Conclusions	-
	A. Internal Variables for the Quantum Rabi Model	9	Acknowledgments	24
	B. Hohenberg–Kohn Theorem for the Quantum Rai	bi		
	Model	9	Data Availability	24
	C. Hohenberg-Kohn Theorem for the Dicke			
	Model*	10	References	24
	IV. The Levy-Lieb Functional	11		
	A. Definition	11	I. INTRODUCTION	
	B. Properties of the Levy-Lieb Functional	12		
	Proof of Theorem IV.2.1:		A. Prelude and Overview	
	Symmetry of the Levy–Lieb Functional Proof of Theorem IV 2.2:	12		
	Displacement of the Levy-Lieb Functional	12	The study of light-matter interactions forms the bas understanding a wide range of phenomena and those of	effects
	Proof of Theorem IV.2.3:	1.7	are instrumental for measuring and manipulating matter	in ex-
	Real & Positive Optimizers	13	periments. At the fundamental level, charged particles	inter-
	Proof of Theorem IV.2.4:	1.7	act among each other through their coupling to the p	hoton
	virial sciation	1.5	C 11	

00 [math-ph] arXiv:2409.13767v

QUANTUM-ELECTRODYNAMICAL DENSITY-FUNCTIONAL THEORY FOR THE DICKE HAMILTONIAN

VEBJØRN H. BAKKESTUEN

Department of Computer Science, Oslo Metropolitan University, Norway

MIHÁLY A. CSIRIK AND ANDRE LAESTADIUS

Department of Computer Science, Oslo Metropolitan University, Narway

Hulleraas Centre for Quantum Molecular Sciences, Department of Chemistru. University of Oslo, Norway

MARKUS PENZ

Max Planck Institute for the Structure and Dynamics of Matter, Hambura Germanu

Department of Computer Science, Oslo Metropolitan University, Norway

Anormatery. A datailed analysis of domits, functional theory for counterpolestrodynamical model systems is provided. In particular, the quantum Rabi model, the Dicke model, and a generalization of the latter to multiple modes are considered. We prove a Hohenberg-Kohn theorem that manifests the magnetization and displacement as internal unrights, along with several representability results. The constrained-search functionals for pure states and ensembles are introduced and analyzed. We find the ontimizers for the responsate constrained among functional to be low-lying eigenstates of the Hamiltonian and based on the momenties of the entimizers are formulate an adjubaticconnection formula. In the reduced case of the Rabi model we can even show differentiability of the universal density functional, which amounts to unions nure-state p-representability.

1 INTRODUCTION

Quantum electrodynamics (OED) is the fully quantized theory of matter and light [Dyd96: CD12] It describes the interaction between charmed particles through their coupling to the electromagnetic field. Apart from high-energy physics, particularly in the domain of equilibrium condensed-matter physics, non-relativistic OED

a) Electronic mail: andre.laestadius@oslomet.no

Quantum-Electrodynamical Density-Functional Theory

13

15

2nd December 2024 2/17

Corresponding author: andre bestadius@calomet.no.

Table of Contents

1 The Dicke Model

2 A Density-Functional Theory

- The Ground-State Problem
- A Hohenberg–Kohn Theorem
- The Levy–Lieb Functional

3 Conclusions

4 References

State Space & Lifted Pauli Matrices

 ${\it N}$ two-level systems and ${\it M}$ QHOs:

$$\boldsymbol{\psi} \in L^2(\mathbb{R}^M, \mathbb{C}) \otimes \mathbb{C}^{2^N} \simeq L^2(\mathbb{R}^M, \mathbb{C}^{2^N})$$

$$\sigma_a^j = \mathbb{1} \otimes \dots \otimes \mathbb{1} \otimes \underbrace{\sigma_a}_{j\text{th}} \otimes \mathbb{1} \otimes \dots \otimes \mathbb{1}, \quad a \in \{x, y, z\}$$
$$\sigma_x = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
$$\sigma_a = \begin{pmatrix} \sigma_a^1\\ \sigma_a^2\\ \vdots\\ \sigma_a^N \end{pmatrix} \in \left(\mathbb{C}^{2^N \times 2^N}\right)^N$$

Example: N = 2

$$\boldsymbol{\sigma}_{z} = \left(\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}, \begin{pmatrix} 1 & & & \\ & & 1 & \\ & & & 1 & \\ & & & -1 \end{pmatrix} \right)^{\top}$$
$$\boldsymbol{\sigma}_{x} = \left(\begin{pmatrix} 0 & 0 & 1 & 0 & \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \right)^{\top}$$

$$\langle \boldsymbol{\psi}, \, \boldsymbol{\sigma}_{z}^{1} \boldsymbol{\psi} \rangle = \|\psi_{++}\|_{L^{2}(\mathbb{R}^{M})}^{2} + \|\psi_{+-}\|_{L^{2}(\mathbb{R}^{M})}^{2} - \|\psi_{-+}\|_{L^{2}(\mathbb{R}^{M})}^{2} - \|\psi_{--}\|_{L^{2}(\mathbb{R}^{M})}^{2}$$

The Multimode Dicke Hamiltonian

Internal Hamiltonian

$$\mathbf{H}_0 = \left(-\Delta + |\mathbf{x}|^2
ight) \mathbb{1}_{\mathbb{C}^{2^N}} + \mathbf{x}\cdot\Lambdaoldsymbol{\sigma}_z - \mathbf{t}\cdotoldsymbol{\sigma}_x$$

$$\mathbf{\Lambda} \in \mathbb{R}^{M \times N} \qquad \mathbf{t} \in \mathbb{R}^N \quad (\mathbf{t} \neq 0)$$

"Potentials":

$$\mathbf{v} \in \mathbb{R}^N \qquad \mathbf{j} \in \mathbb{R}^M$$

Full Hamiltonian

$$\mathbf{H}(\mathbf{v},\mathbf{j}) = \mathbf{H}_0 + \mathbf{v} \cdot \boldsymbol{\sigma}_z + \mathbf{j} \cdot \mathbf{x}$$

"Densities":

$$\boldsymbol{\sigma} = \langle \boldsymbol{\psi}, \, \boldsymbol{\sigma}_{\boldsymbol{z}} \boldsymbol{\psi} \rangle \in [-1, 1]^N \qquad \boldsymbol{\xi} = \langle \boldsymbol{\psi}, \, \mathbf{x} \boldsymbol{\psi} \rangle \in \mathbb{R}^M$$

NB! Math units, e.g., $\frac{\omega}{2} = 1$

A Density-Functional Theory

1 The Dicke Model

2 A Density-Functional Theory

- The Ground-State Problem
- A Hohenberg–Kohn Theorem
- The Levy–Lieb Functional

3 Conclusions

4 References

The Ground-State Problem

 $Q_0 := Q(\mathbf{H}_0) \quad \longleftarrow \quad \text{form domain of QHO}$

$$E(\mathbf{v}, \mathbf{j}) = \inf_{\substack{\boldsymbol{\psi} \in Q_0 \ \|\boldsymbol{\psi}\|^2 = 1}} \langle \boldsymbol{\psi}, \, \mathbf{H}(\mathbf{v}, \mathbf{j}) \boldsymbol{\psi}
angle$$

Theorem (*N*-representability)

For every $(\boldsymbol{\sigma}, \boldsymbol{\xi}) \in [-1, 1]^N \times \mathbb{R}^M$ there exists a $\boldsymbol{\psi} \in Q_0$ such that

$$\|\psi\| = 1, \quad \langle \psi, \sigma_z \psi \rangle = \sigma, \quad \text{and} \quad \langle \psi, \mathbf{x} \psi \rangle = \boldsymbol{\xi}.$$

Vebjørn H. Bakkestuen

Quantum-Electrodynamical Density-Functional Theory

Regular Density

Definition (Regular Polarisation [1])

 $oldsymbol{\sigma} \in [-1,1]^N$ is called *regular* if for every $\chi \in \mathbb{R}^{2^N}_+$ such that

$$\|\chi\| = 1$$
 and $\langle \chi, \sigma_z \chi \rangle = \sigma$

one has $\{\chi, \sigma_z^1\chi, \ldots, \sigma_z^N\chi\}$ as a set of linear independent vectors.

The set of all regular σ is denoted \mathcal{R}_N .

Any $\boldsymbol{\sigma} \in [-1,1]^N \setminus \mathcal{R}_N$ is not regular.

Example: Regular Density

Vebjørn H. Bakkestuen

Quantum-Electrodynamical Density-Functional Theory

Example: Regular Density N = 3

$$\mathcal{R}_3 \subset (-1,1)^3$$

 \mathcal{R}_N : union of disjoint open convex polytopes

 $[-1,1]^N \setminus \mathcal{R}_N$: union of finite number of hyperplanes intersected with $[-1,1]^N$

A Hohenberg–Kohn Theorem

Theorem

Any density pair $(\sigma, \xi) \in \mathcal{R}_N \times \mathbb{R}^M$ of a ground state uniquely determines an external pair $(\mathbf{v}, \mathbf{j}) \in \mathbb{R}^N \times \mathbb{R}^M$. That is, the mapping

$$\mathbb{R}^N imes \mathbb{R}^M
i (\mathbf{v}, \mathbf{j}) \longmapsto (\boldsymbol{\sigma}, \boldsymbol{\xi}) \in \mathcal{R}_N imes \mathbb{R}^M$$

is an injection.

Internal variables

$$(\boldsymbol{\sigma}, \boldsymbol{\xi}) \in [-1, 1]^N imes \mathbb{R}^M$$

The Levy–Lieb Functional

Constraint manifold

$$\mathcal{M}_{\boldsymbol{\sigma},\boldsymbol{\xi}} = \{ \boldsymbol{\psi} \in Q_0 : \|\boldsymbol{\psi}\| = 1, \, \langle \boldsymbol{\psi}, \, \boldsymbol{\sigma}_z \boldsymbol{\psi} \rangle = \boldsymbol{\sigma}, \, \langle \boldsymbol{\psi}, \, \mathbf{x} \boldsymbol{\psi} \rangle = \boldsymbol{\xi} \}$$

$$F_{\mathrm{LL}}: [-1,1]^N \times \mathbb{R}^M \to \mathbb{R},$$

$$F_{ ext{LL}}(oldsymbol{\sigma},oldsymbol{\xi}):=\inf_{oldsymbol{\psi}\in\mathcal{M}_{oldsymbol{\sigma},oldsymbol{\xi}}}ig\langleoldsymbol{\psi},\,\mathbf{H}_{0}oldsymbol{\psi}ig
angle$$

$$E(\mathbf{v}, \mathbf{j}) = \inf_{(\boldsymbol{\sigma}, \boldsymbol{\xi}) \in [-1, 1]^N \times \mathbb{R}^M} \left\{ F_{\mathrm{LL}}(\boldsymbol{\sigma}, \boldsymbol{\xi}) + \mathbf{v} \cdot \boldsymbol{\sigma} + \mathbf{j} \cdot \boldsymbol{\xi} \right\}$$

Properties of $F_{\rm LL}$

For every $(\boldsymbol{\sigma}, \boldsymbol{\xi}) \in [-1, 1]^N imes \mathbb{R}^M$

Symmetric

$$F_{\rm LL}(\boldsymbol{\sigma},\boldsymbol{\xi}) = F_{\rm LL}(-\boldsymbol{\sigma},-\boldsymbol{\xi})$$

Displacement rule

$$F_{\text{LL}}(\boldsymbol{\sigma},\boldsymbol{\xi}) = F_{\text{LL}}(\boldsymbol{\sigma},0) + \boldsymbol{\xi} \cdot \boldsymbol{\Lambda}\boldsymbol{\sigma} + |\boldsymbol{\xi}|^2$$

There exists a *real-valued optimiser* of $F_{\mathrm{LL}}(\boldsymbol{\sigma},\boldsymbol{\xi})$

Virial relation: for any optimiser ψ of $F_{LL}(\sigma, 0)$,

$$\|oldsymbol{
abla}\psi\|^2 - \|oldsymbol{x}oldsymbol{\psi}\|^2 = rac{1}{2}\langleoldsymbol{\psi},\,oldsymbol{x}\cdot\Lambdaoldsymbol{\sigma}_zoldsymbol{\psi}
angle$$

Optimiser of F_{LL}

Theorem (Optimisers are low-lying eigenstates)

Let $(\sigma, \xi) \in \mathcal{R}_N \times \mathbb{R}^M$. Suppose that $\psi \in \mathcal{M}_{\sigma, \xi}$ is an optimiser of $F_{LL}(\sigma, \xi)$ with Lagrange multipliers $E \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^N$, and $\mathbf{j} \in \mathbb{R}^M$ such that ψ satisfies

 $\mathbf{H}(\mathbf{v},\mathbf{j})\boldsymbol{\psi}=E\boldsymbol{\psi},$

and for all χ in the tangent space of $\mathcal{M}_{\sigma,\xi}$ at ψ ,

 $\langle \boldsymbol{\chi}, \mathbf{H}(\mathbf{v}, \mathbf{j}) \boldsymbol{\chi} \rangle \geq E \| \boldsymbol{\chi} \|^2.$

Then ψ is at most the (N + M)th excited eigenstate of $\mathbf{H}(\mathbf{v}, \mathbf{j})$, and

$$F_{\rm LL}(\boldsymbol{\sigma},\boldsymbol{\xi}) = \langle \boldsymbol{\psi},\, \mathbf{H}(\mathbf{v},\mathbf{j})\boldsymbol{\psi} \rangle = E - \mathbf{v} \cdot \boldsymbol{\sigma} - \mathbf{j} \cdot \boldsymbol{\xi}.$$

Conclusions

- Very explicit form of DFT
- Regular densities
- Characterisation of optimisers
- Open questions ($N \ge 2$):
 - v-representability
 - Differentiability of $F_{\rm LL}$
 - Does $F_{\rm LL} = F_{\rm L}$?

References

- 1. **Bakkestuen, V. H.** *et al. Quantum-Electrodynamical Density-Functional Theory Exemplified by the Quantum Rabi Model.* 2024. arXiv: 2411.15256 [quant-ph]. https://arxiv.org/abs/2411.15256.
- 2. Bakkestuen, V. H., Csirik, M. A., Laestadius, A. & Penz, M. *Quantum-electrodynamical density-functional theory for the Dicke Hamiltonian*. 2024. arXiv: 2409.13767 [math-ph]. https://arxiv.org/abs/2409.13767.

Thank you for your attention! Avaliable on arXiv

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET

Appendix

Motivation

- Light-matter interactions
- Ground-state effects of photon-electron coupling
- Explicit from (almost) of a DFT functional
- Simple model

The Quantum Rabi Model

Vebjørn H. Bakkestuen

Quantum-Electrodynamical Density-Functional Theory

Coupling Strength Functional

Coupling strength parameter: $s \in \mathbb{R}$

$$\mathbf{H}_{0}^{s\Lambda} = (-\Delta + |\mathbf{x}|) \mathbb{1}_{C^{2^{N}}} + s\mathbf{x} \cdot \Lambda \boldsymbol{\sigma}_{z} - \mathbf{t} \cdot \boldsymbol{\sigma}_{x}$$

$$F^{s\Lambda}_{
m LL}(oldsymbol{\sigma},oldsymbol{\xi}) = \inf_{oldsymbol{\psi}\in\mathcal{M}_{oldsymbol{\sigma}}} \langleoldsymbol{\psi},\,\mathbf{H}^{s\Lambda}_{0}oldsymbol{\psi}
angle$$

 Q_0 unchanged

Vebjørn H. Bakkestuen

A Trial State

Lemma

Let $(\boldsymbol{\sigma}, \boldsymbol{\xi}) \in [-1, 1]^N \times \mathbb{R}^M$ and $\Lambda = 0$, then the state

$$\boldsymbol{\psi}(x) = \frac{1}{\pi^{M/4}} e^{-\frac{1}{2}|\mathbf{x}-\boldsymbol{\xi}|^2} \mathbf{c}, \qquad \mathbf{c} = \bigotimes_{n=1}^N \begin{pmatrix} \sqrt{\frac{1+\sigma_n}{\sqrt{2}}} \\ \sqrt{\frac{1-\sigma_n}{\sqrt{2}}} \end{pmatrix}$$

is an optimiser of $F^0_{
m LL}(oldsymbol{\sigma},oldsymbol{\xi})$, and

$$F_{\mathrm{LL}}^{0}(\boldsymbol{\sigma},\boldsymbol{\xi}) = M + |\boldsymbol{\xi}|^{2} - \sum_{n}^{N} t_{n} \sqrt{1 - \sigma_{n}^{2}}.$$

Vebjørn H. Bakkestuen

The Superdifferential of $F_{\rm LL}$

 $\mathbb{R}^{M\times N} \ni \Lambda \longmapsto F^{\Lambda}_{\mathrm{LL}}(\boldsymbol{\sigma}, \boldsymbol{\xi}) \quad \text{and} \quad \mathbb{R} \ni s \longmapsto F^{s\Lambda}_{\mathrm{LL}}(\boldsymbol{\sigma}, \boldsymbol{\xi}) \quad \text{convex}$

Lemma

For every (fixed) $(\boldsymbol{\sigma}, \boldsymbol{\xi}) \in [-1, 1]^N \times \mathbb{R}^M$ and $s \in \mathbb{R}$, then

 $\overline{\partial}_s \big[F_{\mathrm{LL}}^{s\Lambda}(\boldsymbol{\sigma}, \boldsymbol{\xi}) \big] \left(s \right) \supset \big\{ \langle \boldsymbol{\psi}_s, \, \mathbf{x} \cdot \Lambda \boldsymbol{\sigma} \boldsymbol{\psi}_s \rangle : \boldsymbol{\psi}_s \in Q_0 \text{ with } F_{\mathrm{LL}}^{s\Lambda} = \langle \boldsymbol{\psi}_s, \, \mathbf{H}_0^{s\Lambda} \boldsymbol{\psi}_s \rangle \big\}$

The Adiabatic Connection

Theorem

The functional $F_{LL}^{\Lambda}: [-1,1]^N \times \mathbb{R}^M \to \mathbb{R}$ satisfies

$$F_{\rm LL}^{\Lambda}(\boldsymbol{\sigma},\boldsymbol{\xi}) = M + |\boldsymbol{\xi}|^2 - \sum_n^N t_n \sqrt{1 - \sigma_n^2} + \boldsymbol{\xi} \cdot \Lambda \boldsymbol{\sigma} + G^{\Lambda}(\boldsymbol{\sigma}).$$

Here

$$G^{\Lambda}(\boldsymbol{\sigma}) := rac{1}{2} |\Lambda \boldsymbol{\sigma}|^2 - \int_0^1 \left(rac{1}{2} \|\Lambda \boldsymbol{\sigma}_z \boldsymbol{\psi}_s\|^2 + \langle \mathbf{t} \cdot \boldsymbol{\sigma}_x \boldsymbol{\psi}_s, \boldsymbol{\nabla} \cdot \Lambda(\boldsymbol{\sigma}_z - \boldsymbol{\sigma}) \boldsymbol{\psi}_s
angle
ight) \mathrm{d}s \,,$$

and $\psi_s \in \mathcal{M}_{\sigma,0}$ is a real-valued optimiser of $F_{\mathrm{LL}}^{s\Lambda}(\sigma,0)$.

