

Hartree-Fock level density-potential inversion for periodic systems

UNIVERSITY

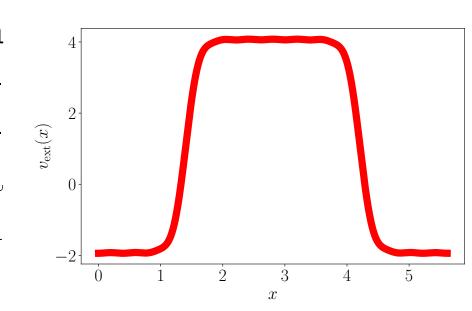
OF OSLO

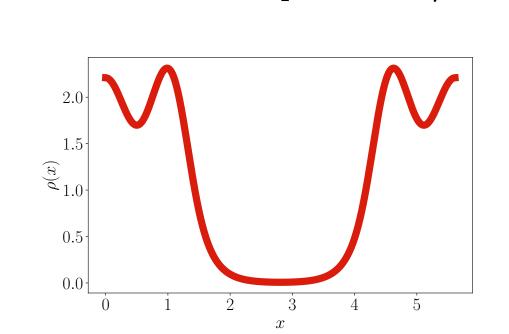
Oliver M. Bohle^{1,*,†,‡}, Maryam Lotfigolian^{2,*}, Andre Laestadius^{1,2,*,*} & Erik I. Tellgren^{1,*}

1 Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
2 Department of Computer Science, Oslo Metropolitan University, 0130 Oslo, Norway
Supported under; ★ Hylleraas Centre Grant No. 262695, ★ ERC Starting Grant No. 101041487 REGAL, † CompSci
European Union's Horizon 2020 No. 945371, UNINETT Sigma2 Grant No. NN4654K
‡ o.m.bohel@kjemi.uio.no

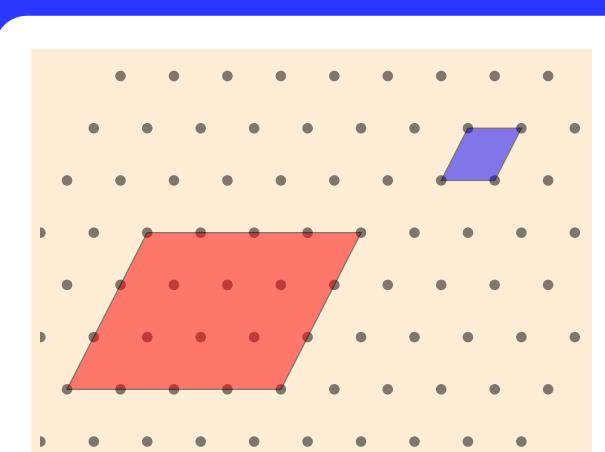
Introduction

- The **Forward problem** in DFT is to calculate the groundstate density, ρ , from a potential, v.
- The **Inverse problem**, we start from a ρ and determine the potential v which reproduces ρ .
- We investigated the **Inversion**problem to obtain the local potential that describes Fock exchange using the Moreau–Yosida (MY) regularisation formulation of DFT using HF.





Periodicity



- The theoretical framework is general for spatial domains \mathbb{R}^d of any dimension d and number of periodic directions p, such that $p \leq d$.
- Fig. case of p=d=2, blue shaded cell is the unit cell and the red shaded cell is the Born-von Kármán
- Results illustrates p = d = 1

Hamiltonian

- The wave function is periodic over the Born–von Kármán zone (BvK).
- The Hamiltonian is defined as,

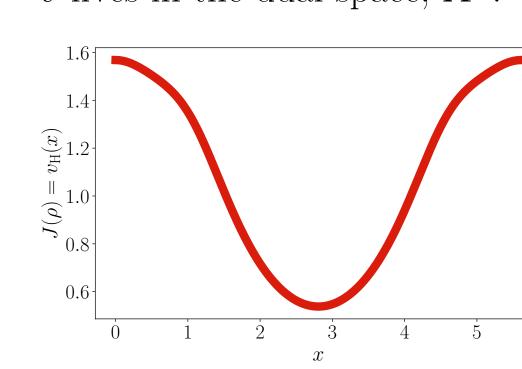
$$H = -\frac{1}{2} \sum_{i=1}^{M} \frac{\mathrm{d}^2}{\mathrm{d}x_i^2} + \sum_{i=1}^{M} v_{\text{ext}}(x_i) + \lambda \sum_{i < j} w_{\text{per}}(x_i - x_j),$$
$$w_{\text{per}}(x) \coloneqq \sum_{m} \frac{e^{-\gamma|x-m|}}{2\gamma},$$

where $v_{\text{ext}}(x_i)$ is the external potential and M the number of electrons in the BvK

- Potentials and densities are periodic in the unit cell.
- The last term is the two-electron interaction, the Yukawa interaction.

Duality mapping

- ρ 's with finite Hartree/Yukawa self-energy form Sobolev space, X.
- v lives in the dual space, X^* .



• The duality map from density to potentials,

$$v = J(\rho) = \sum_{G \in \mathcal{RL}} \frac{\widetilde{
ho}(G)}{\gamma^2 + G^2} e^{iGx}, \qquad v^{\varepsilon} = \frac{1}{\varepsilon} J(\rho^{\varepsilon} - \rho_{\mathrm{ref}}),$$

• and from potentials to density

$$\rho = J^{-1}(v) = \sum_{G \in \mathcal{RL}} (\gamma^2 + G^2) \tilde{v}(G) e^{iGx}.$$

• The duality map satisfies

Hartree energy
$$=\frac{1}{2} \|\rho\|_X^2 = \frac{1}{2} \|v\|_{X^*}^2 = \frac{1}{2} \langle J(\rho), \rho \rangle$$

Moreau-Yosida regularisation

• We define the Moreau–Yosida regularisation of f at $\rho \in X$ as,

$$f^{\varepsilon}(\rho) = \inf_{\rho' \in X} \left\{ f(\rho') + \frac{1}{2\varepsilon} \|\rho' - \rho\|_X^2 \right\} = f(\rho^{\varepsilon}) + \frac{1}{2\varepsilon} \|\rho^{\varepsilon} - \rho\|_X^2,$$

where $\varepsilon > 0$ is the regularisation parameter.

- ρ^{ε} the proximal point.
- $\bullet \frac{1}{2\varepsilon} \|\rho \rho'\|_X^2$ penalty term $\implies \rho^{\varepsilon} \to \rho \text{ as } \varepsilon \to 0+.$

Determining the exchange potential

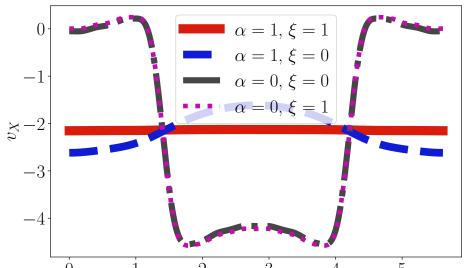
• We have four different methods to determine the exchange potential,

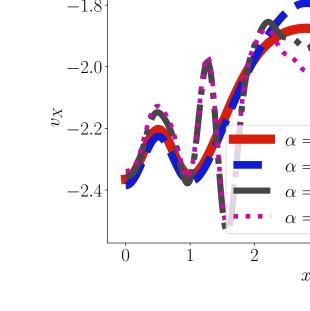
$$F_{\alpha,\xi}(\rho) = T(\rho) + \alpha \langle v_{\text{ext}}, \rho \rangle + \xi \langle J(\rho), \rho \rangle,$$

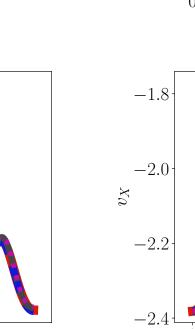
$$v_{\rm X} = (\alpha - 1)v_{\rm ext} + (\xi + \sigma)J(\rho_D)$$
$$-(\sigma + 1)J(\rho_{\rm ref}),$$

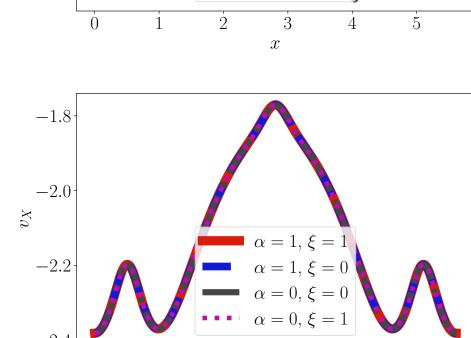
where $\alpha, \xi \in \{0, 1\}$ and $\sigma = 1/\varepsilon$.

• Gives a quantitive way to monitor convergence.









Regularised Hartree–Fock

• The Hartree–Fock energy is given by,

$$\mathcal{E}(\mathcal{D}) = \operatorname{tr}(\mathcal{D}h) + \frac{\lambda}{2} \langle J(\rho_{\mathcal{D}}), \rho_{\mathcal{D}} \rangle - \mu \mathcal{X}(\mathcal{D}),$$

where \mathcal{D} is the 1-PRDM, h the core Hamiltonian, $\langle J(\rho), \rho \rangle$ the direct Hartree energy and, \mathcal{X} the exchange energy.

- We are interested in finding the exchange potential, $v_{\rm X}$, from a reference density, $\rho_{\rm ref}$, hence, $\mu=0$ in the inversion calculation.
- ullet To determine $v_{
 m X}$ arising from $ho_{
 m ref}$, we include a penalty term to the HF energy,

$$\frac{1}{2\varepsilon} \langle J(\rho_{\mathcal{D}} - \rho_{\text{ref}}), \rho_{\mathcal{D}} - \rho_{\text{ref}} \rangle$$

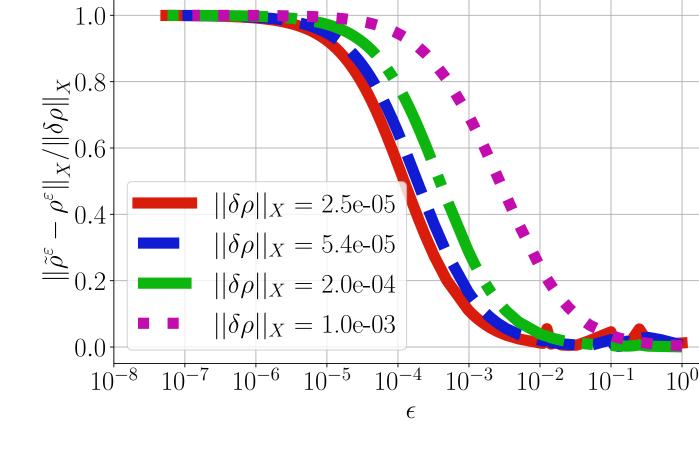
where, $\rho_{\rm ref}$ is the target density.

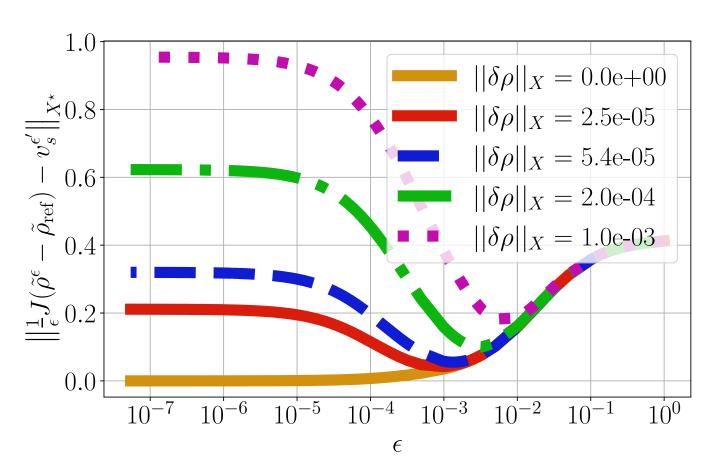
- The penalty term guides the proximal point to the reference density as $\varepsilon \to 0+$.
- When expanding the penalty term we get an extra $1/\varepsilon$ worth of direct Hartree energy added to $\mathcal{E}^{\varepsilon}(\mathcal{D})$,

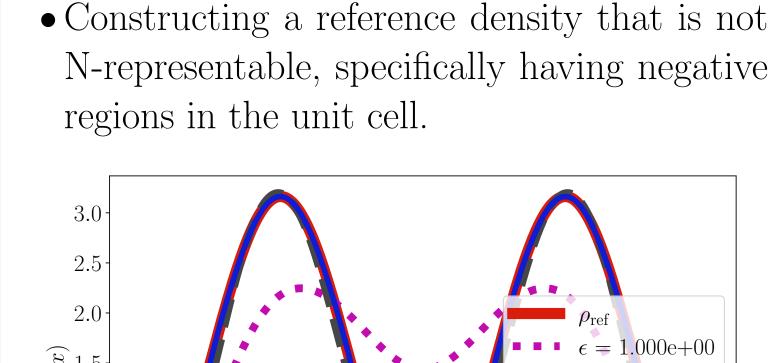
$$\mathcal{E}^{\varepsilon}(\mathcal{D}) = \mathcal{E}(\mathcal{D}) + \frac{1}{\varepsilon} \langle J(\rho_{\mathcal{D}}), \rho_{\mathcal{D}} \rangle - \frac{2}{\varepsilon} \langle J(\rho_{\mathcal{D}}), \rho_{\text{ref}} \rangle + \frac{1}{\varepsilon} \langle J(\rho_{\text{ref}}), \rho_{\text{ref}} \rangle.$$

Error Analysis

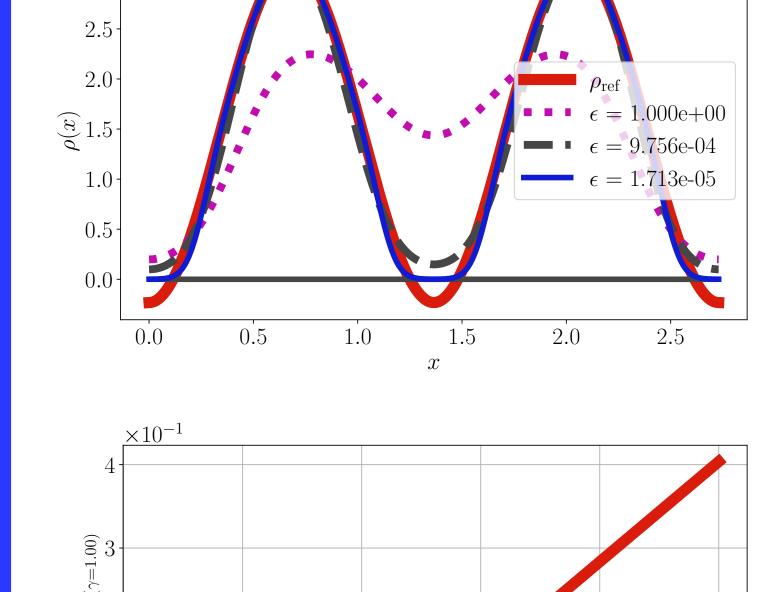
• Adding a perturbation, $\delta \rho$, to the reference density, $\tilde{\rho}_{\text{ref}} = \rho_{\text{ref}} + \delta \rho$, such that $\delta \rho$ truncates ρ_{ref} .

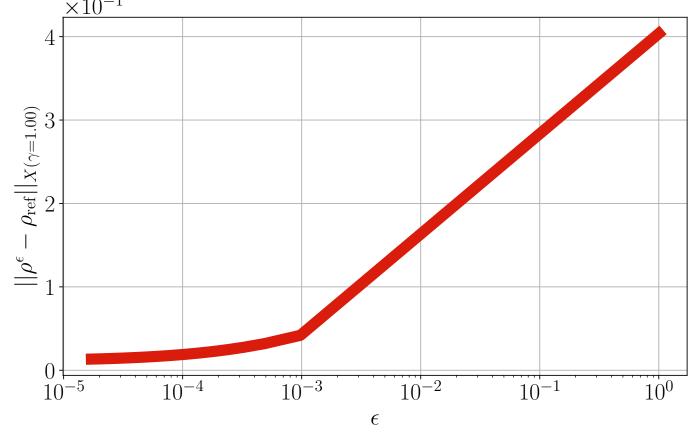






Non N-representable density





References

- (1) Zhao, Q. et al. *Phys. Rev. A* **1994**, *50*, 2138.
- (2) Penz, M. et al. *Electron. Struct.* **2023**, *5*, 014009.
- (3) Herbst, M. F. et al. *Phys. Rev. B* **2025**, *111*, 205143.
- (4) Lieb, E. H. Int. J. Quantum Chem. 1983, 24, 243–277.
 (5) Kvaal, S. et al. J. Chem. Phys. 2014, 140, 18A518.