Kvantefysikk for nyfikne

Vi synest kvantefysikk og kvanteteknologi er alt for viktig og forunderleg til å vere ei greie for spesielt interesserte. Men mykje av det ein lærer om kvante-verda legg opp til å ha lag på lag med matematikk-kurs på førehand. Det ønsker vi å gjere noko med.

Til hausten startar vi opp eit kurs som har som mål å gi alle interessesrte ein introduksjon til kvanteverda:

https://www.oslomet.no/om/nyheter/derfor-vite-meir-om-kvanteverda

Matematikk- eller programmerings-erfaring er inga føresetnad. Gjennom presentasjonar, diskusjonar, demonstrasjonar og intuisjonar håpar vi at dei som deltar sit att med eit visst bilde av korleis mikrokosmos er skrudd saman – og korleis dette blir brukt – og vil bli brukt – teknologisk. Stikkord: Kvantedatamaskinar.

Kurset er på 5 studiepoeng, og vi har plass til 20 nyfikne studentar.

Seminar: Perdo Ribeiro

It is a pleasure to invite to this years first Quantum seminar.

Perdo Ribero from the University of Lisbon is presently our guest at the Hub. Upcoming Monday, the 22nd, he will tell us a bit about one of his research interests, namely Random matrices on dissipative quantum dynamics

Time and place: Room PS523 in P35, OsloMet. 12.00-13.00.

Abstract:

Understanding the dissipative dynamics of complex quantum systems is essential to describe quantum matter at large time scales. However, even within a simplified Markovian description, studying the spectral and steady-state properties of Lindblad operators remains a challengiing task. In this talk, we present some novel insights into universal features of generic open quantum systems under Markovian dissipation by using ensemble averaging based on (non-Hermitian) random matrices. We examine three representative cases: quadratic Liouvilians, dissipative SYK models, and fully random Liouvilian operators. For this last example, we present a recent systematic classification of many-body Lindblad superoperators based on the properties of the Lindbladian under antiunitary symmetries and unitary involutions.

Visit from the Danish embassy

We were thrilled to be contacted by Anton Højris Middelhede at the Danish embassy in Oslo for a get-together while 2024 was still young. Together with Emilie Michaelsen and Øystein Sandvik we had a very interesting – and promising – exchange of thoughts and interesting opportunities. Øystein represents Invest in Denmark, a public service aimed to facilitate establishing new enterprises in Denmark.

As many may know, Denmark has a long-standing and proud quantum history – one that is not limited to Niels Bohr and his “Copenhagen interpretation” of quantum physics, but also involves dedicated research and innovation which extends as far as quantum physics itself.

And, contrary to Norway, Denmark is already a major player when it comes to making the second quantum revolution happen – aided by both substantial and public and private funding.

Our Danish contacts are most welcome again. As we did not manage to stick to our time schedule the last time, we are certain that we will find interesting things to talk about also next time we meet.

From left to right: Laurence Habib, dean at the Faculty of Art, Technology and Design, Øystein Sandvik, Invest in Denmark, Emilie Michaelsen and Anton Højris Middelhede, the Danish embassy, Silje Røysen Salvador, senior advisor at OsloMet, Andre Laestadius (behind Sergiy) and Sergiy Denysov.

The 2023 Nobel Prize in Chemistry: Quantum Dots

In this piece, which is written in Norwegian, Sølve Selstø gives a brief explanation of last year’s Nobel Prize in chemistry. It certainly falls within the quantum scope. The piece was published in last year’s last issue of Fra fysikkens verden, which is published by Norsk fysisk selskap.

Nobelprisen i kjemi 2023 er delt likt mellom dei tre forskarane:

  • Moungi Bawendi Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
  • Louis Brus Columbia University, New York, NY, USA
  • Alexei Ekimov Nanocrystals Technology Inc., New York, NY, USA

for «oppdainga og syntetiseringa av kvanteprikkar (engelsk: quantum dots).».

Som mange veit, fekk Marie Skłodowska-Curie nobelprisen i både kjemi og fysikk. Då «vår eigen» Lars Onsager fekk ein hyggeleg telefon med invitasjon til Stockholm, var det ikkje straks opplagt for han om det var for å ta imot fysikk-eller kjemiprisen. Det var kjemiprisen. Også i år er nobelprisen i kjemi ei stadfesting av overlappet mellom dei to fagfelta.

Det heile begynte på tidleg 1980-talet – då både Yekimov og Brus, uavhengig av kvarandre, lukkast i lage nano-krystall med ein eigenskap dei kalla quantum size effect – kvante-eigenskaper som var bestemt av storleiken på krystalla. Når ein sendte lys på dei, oppdaga dei høg absorbering for spesi­fikke bølgelengder – bølgelengder som viste seg å auke med storleiken på nano-krystalla. Eit tiår seinare klarte Bawendi å finne ein svært presis og effektiv metode for å kontrollere storleiken på slike krystall. Det gjorde han mellom anna ved å justere temperaturen på væska dei blei danna i.

Det hadde lenge vore kjent at ulike stoff, atom og molekyl, kan identifiserast ut frå korleis dei respon­derer på ulike bølgelengder når ein sender lys på dei. Dette kallar vi spektroskopi; eit atom, for eksempel, absorberer foton med bølgelengder som samsvarar med energidifferensen mellom to kvante-tilstan­dar. Alternativt, ved å sørge for at mange av atoma i ein gass blir eksitert, at elektron går til ein høgare energi-tilstand, vil ein etterpå kunne observere utsendt lys med heilt spesifikke bølgelengder når atomet spontant går tilbake til grunnstilstanden sin.

Dette er altså ein direkte konsekvens av kvanti­sering – det at dei moglege energiane for eit bunde, mikroskopisk system er avgrensa til eit diskret sett.Eit atom får sitt eige, spesielle «fingeravtrykk» av moglege bølgelengder når det absorberer eller emit­terer lys. Det gjer oss i stand til å identifisere ukjend stoff – ikkje berre i eit laboratorium, men til og med på fjerne stjerner.

Det er mykje det same vi ser med nano-krystalla til Wavendi, Brus og Yekimov. Slike krystall er eksem­pel på det vi kallar kvanteprikkar – halvleiarstrukturar som evnar å fange inn nokre få elektron i eit område så lite at dei følger kvantefysiske lover. Slike kvan­teprikkar har det til felles med atom at energien til elektrona er kvantisert. Dette er hovudgrunnen til at kvanteprikkar ofte blir kalla kunstige atom.

Men mykje er også ulikt om vi samanliknar atom og kvanteprikkar. Sistnemnde er større; mens eit atom er nokre tidels nanometer store, er kvante­prikkar typisk fleire nanometer eller nokre titals nanometer i utstrekning. Men den viktigaste for­skjellen er nok denne: Der energinivåa, strukturen, til atom er prisgitt naturkonstantar som elemen­tærladninga, Planck-konstanten og elektronmassen, kan strukturen til kvanteprikkane justerast. Vi kan langt på veg konstruere dei slik at dei har dei spek­troskopiske eigenskapane vi ønsker!

Nobelprisvinnarane har klart og tydeleg demon­strert korleis dette kan gjerast ved å justere storleiken på kvanteprikkane. For nano-krystall som sender ut lys i den synlege delen av det elek­tromagnetiske spektrumet når dei går over til ein lågare energitilstand, vil ein relativt stor krystall sende raudt lys, mens bølgelengda vil bevege seg mot den lilla delen av spektrumet når kvanteprik­ken blir mindre.

Men storleiken er ikkje det einaste som tel. Fason­gen påverkar også spektrumet. Og det spelar ei rolle kva kvanteprikken er laga av; typisk er det snakk om ein halvleiar-krystall beståande av to grunn­stoff. Kvanteprikkane til nobelprisvinnarane blei konstruerte ved å la små krystallar gro i glas eller i ei væske. Frie enkelt-elektron kan også fangast inn i fastestoff-strukturar sett saman av ulike typar halvleiarar. Her blir fleire ulike geometriar og teknikkar brukte. Ein kan også bruke statiske elek­triske felt til å fange inn elektron i slike samansette halvleiarar-strukturar. Slike kvanteprikkar er spe­sielt fleksible sidan ein, ved å justere den elektriske spenninga, kan endre den romlege avgrensinga. På den måten endrar ein også energi-strukturen til det kvantiserte systemet. I tillegg kan ein manipulere systemet ved å legge på fleire felt, både magnetiske og elektriske, statiske og dynamiske.

Uansett korleis ein gjer det, er det gull verd at vi er i stand til å justere på energinivåa til kvanteprikk­ane – ikkje berre frå eit vitskapleg perspektiv, men også teknologisk. Sidan ein kan finjustere kva farge kvanteprikkane kan sende ut, kan dei for eksem­pel brukast til å gjere LED-lys betre, noko ein alt har tatt i bruk for å lage TV-skjermar. Men dette er ikkje i nærleiken av dei mest spanande bruksom­råda. Kvanteprikkar kan brukast til å gjere fleire faststoff-applikasjonar betre. Dei blir brukt til å lage singel-elektron transistorar. Og ein håpar å kunne bruke dei til å produsere solceller med langt høgare verknadsgrad enn tradisjonelle solceller.

Ved å sørge for at væsker med kvanteprikkar festar seg til spesielt vev, som for eksempel ein svulst, kan kirurgar få svært gode bilde av vevet dei skal operere i – eller fjerne.

Kvanteprikkar er også kandidatar til å lage kvan­te-bits, qubits. Enkelt-elektron i ein kvanteprikk kan styrast mellom ulike kvantetilstandar på ein kon­trollert måte. Ved å sette fleire slike kontrollerbare kvantesystem saman kan ein lage ein kvantedata­maskin. Håpar vi.

Potensialet er stort! Bawendi, Brus og Yekimov har vore med å opne døra til eit spanande rom. Vi har tatt steget over dørstokken, det skal bli span­ande å sjå kva meir vi finn der inne.

Referansar

Quantum food production?

It was a truly pleasant surprise when Anja Løkken Stokke at NCE Heidner Biocluster in late November contacted our hub to ask if we would be interested in giving a webinar. (Of course we were.)

The NCE Heidner Biocluster is Norway’s leading national cluster for green bioeconomy and sustainable food production. Representing the entire value chain in green bioeconomy, the cluster consists of 66 companies, research and educational institutions, and other relevant partners. As strategic areas of interest, they list

  • Intenational commercialization
  • Digitalization
  • Circular economy and sustainability
  • New business models and strategies
  • Biotechnology

So it makes perfect sense that they would be interested in how the second quantum revolution may affect our future.

It was a pleasure to see the diverse turnout at the webinar, held December 14th this year. Around 20 leaders and researchers/developers in various companies and institutions took actively part. The lecturer was quite impressed by the level of both interest and insight.

It would seem that the second quantum revolution will not catch the Norwegian bio-industry off guard!

Building quantum competence in Bergen

We were thrilled to see the interest in quantum computing at the Department of Informatics in Bergen. No less than 24 students completed the course Introduction to Quantum Computing and Quantum Machine Learning! This is certainly a significant contribution when it comes to making our future workforce quantum literate.

The course responsible is Philip Turk, whom you can see in the picture – along with his Bloch sphere, is affiliated with SINTEF – in addition to the University of Bergen. He has every reason to be proud – both of the course he has developed and of his students’ performances at the oral examination. Many of them demonstrated convincing familiarity with advanced quantum algorithms such as quantum phase estimation and Shor’s algorithm – in addition to having simulated and trained their own quantum neural networks. Quantum machine learning coincides with Philip’s own research.

Being an informatics course, emphasis was put more on algorithms – and the formal distinctions between quantum and classical information – than on the physics behind it. We at the OsloMet Quantum Hub salutes the initiative and hope that it continues to build quantum competence in Bergen. Perhaps it would spread to the physics and the chemistry departments too?

On the origin of quantum advantage, by Maksym Teslyk

Quantum computing seems to be a popular trend all over the word nowadays. Many of us have heard that private companies, e.g., D-Wave Systems, Google quantum AI, IBM with its very latest quantum processor Condor, etc., are working hard on the construction and design of quantum computation facilities. Even more on that, the academic community is also involved in the race – and OsloMet is no exception here.

One may wonder why are we working so hard and investing so much time and resources to build a quantum computer? Maybe all this activity is nothing more but a hype, and the focus on common and well-known classical machines, which we know how to produce, would be a better strategy? What are the benefits of calculations based on quantum algorithms, instead of classical ones?

One may suggest pure math to answer these questions. However, algorithm complexity theory is not of great help. There are plenty of issues which it cannot solve. For example, one may try the NP problem, which is believed to be hard enough to be included in the Millenium Prize Problems listing. And introducing quantum complexity classes just makes the approach even more challenging.

The opposite solution is solely practice. One may design a quantum device able to solve some (abstract) tasks which is unsolvable by any existing (or forthcoming) classical computer. The approach attracts much attention today, but cannot provide any satisfiable answer – see, e.g., the recent efficient simulation of quantum processors.

Ok, but we know that the properties of elementary pieces of information exhibit significant differences. For example, any classical bit can be represented as a switch between two mutually excluding classical states. Quantum bits, or qubits, are encoded with the Bloch sphere – they are two-dimensional, unlike bits. Such a seemingly strange and counter-intuitive representation originates from the quantum superposition principle, allowing for a quantum system to contain both mutually excluding outcomes simultaneously. Combined with linearity of unitary operators performing quantum evolution, this allows to hack the computation. Namely, one may encode all the possible combinations of the onset data into a single input state and obtain all the possible outputs in a single run of a quantum processor. Obviously, such a recipe won’t work for classical switches.

So, have we found the answer? On the one hand, both quantum superposition and linearity of operators allow one to use quantum interference at its full power. This can be easily illustrated with the help of, e.g., quantum Bernstein-Vazirani algorithm which outperforms the classical one. On the other hand, the Gottesmann-Knill theorem challenges this and makes the whole approach a bit unclear.

If the properties of information cannot explain the quantum advantage, maybe we should look for something which cannot be reproduced within any classical device at all? How about entanglement? Indeed, this phenomenon, blamed by A. Einstein as a ‘spooky action at a distance’, exhibits the possibility of correlations at the level which is unattainable in the terms of non-quantum physics. It is also known as quantum non-locality and violates Bell inequalities which any classical system, regardless its properties and working principles, should obey.

Entangled states imply the existence of a quantum communication channel and can be used to transfer data far more efficiently than any existing communication networks. These are not just words: we do have such quantum protocols as quantum teleportation or superdense coding, and both are heavily based on entanglement.

So, we see that quantum non-locality may be treated as a quantum resource allowing more efficient information transfer. Moreover, it was shown that if the entanglement which is produced by some quantum circuit is upper-bounded, then it can be efficiently simulated classically. Therefore, one may conclude that entanglement speeds up quantum computation. However, another study could not detect any significant role of this resource in the Shor’s algorithm. Taking into account that the algorithm is one of the most efficient among the ones known to date, we must admit that the role of entanglement in the speed-up requires further clarification.

We may consider the problem at the very abstract level also. Any process obeys some set of rules, which can be formalized in the terms of underlying logic. The formalism was developed almost a century ago. It clearly demonstrates that any classical system obeys the rules of Boolean logic, which can be inferred from the relations among the subsets of a phase space, and that any quantum system is governed by the relations among the linear subspaces of the Hilbert space (quantum logic). The key difference between these two systems originates from the commutation properties of classical functions and quantum operators, respectively.

The Huygens-Fresnel principle allows to compare both logics with such different algebraic structures. Namely, let us consider a wave propagating from point A to B. In the terms of wave optics we know that the transition should take into account all possible paths through space. However, in case the wavelength is negligible, all these additional paths vanish but the one governed by far more simple ray optics. The same procedure may be applied to quantum circuits in terms of the path integral formalism. Taking the de Broglie wavelength to the zeroth limit determines their transition to classical calculations. Unfortunately, the estimation of information lost under the limit does not reproduce the corresponding increase of computational inefficiency. To sum up, we know that quantum advantage exists. This can be easily illustrated with the help of Grover’s search algorithm, which outperforms any classical analog. On the other hand, the origin of the advantage looks fuzzy. And everyone is highly invited to participate in solving the puzzle.

Congrats, Maksym

Yesterday, November 23rd, our visiting researcher Maksym Teslyk sucessfully defended his PhD dissertation at the University of Oslo.

Not only did he defend his thesis, he also gave two lectures on different topics this day, which was a long one for him, no doubt. I had the pleasure of being present at the first of these lectures, in which he told a very interesting story about the subtle quest for actual quantum advantage in computing. While we know that it does exists for several problems, it’s fundamental nature appears somewhat elusive.

In any case: We at the OsloMet Quantum Hub want to say CONGRATS, Maksym!

Qhub goes to Helsinki

Mid November a bunch of us had the pleasure of going to Helsinki, the captial of Finland and, arguably, the Nordic capital of quantum startups. In any case, what we learned did confirm that there is a lot of interesting Finish activities going on in the quantum area – both theoretically and experimentally.

Perhaps the most interesting part was a visit to the Low Temperature Lab at Aalto university. (By “low temperature” we are not referring not mean average Finish Winter temperature, we are talking milli Kelvins.) Several setups, involving extremely cold “fridges”, were constructed for various quantum sensing applications – including an ambitious quest to measure quantum effects in gravity.

Our trip, aiming both at learning more about Nordic quantum activities and at raising cohesion within our hub, also involved a visit to Helsinki University. In addition to an inspiring visit to a lab aimed at curious school children and youths, we learned about diverse topics such as quantum machine learning, post quantum cryptography and the benefits of using a combinatorial approach to quantum circuits – only to name a few.

For a few photos from the trip, please follow this link.

Quantum jumps at Holmenkollen

November 7th to 9th we had the pleasure of hosting a November School on Quantum Computing. At the risk of appearing cocky: Beforehand we were very proud of the program we had put together. And the lecturers did not let us down!

Several aspects of quantum computing were addressed. To name a few:

  • Quantum error correction
  • Quantum annealing
  • Quantum reservoir computing
  • Quantum hardware
  • Quantum computing for quantum chemistry
  • Quantum software engineering
  • Quantum states encoded in neural networks
  • Quantum noise

The lecturers included both academic researchers and representatives from the industry, specifically from D-Wave and IBM.

We believe it is fair to say that many large quantum leaps were made in the participants’ knowledge in quantum computing. In addition to our own PhD and Master students, people from Chalmers University of Technology, the University of Oslo, Lund University, Simula and the Norwegian School of Economics.

The venue provided a very nice atmosphere for getting to know more of the many flavours of quantum computing – and the growing community of people within the field.

Read more about it on the School’s website. Here you will also find the slides from most of the lectures – and a gallery. As small excerpt from this gallery is seen below.

Proud organizers: Andre Laestadius and Sergiy Denysov.
The venue: Holmenkollen Park Hotel.
Some of the participants at Roseslottet.